sábado, 29 de julho de 2017

Revistas de Eletrônica

Fiz uma pequena alteração na lista de revistas e aproveitei para adicionar mais alguns links de revistas que não tinha no blog, como vocês podem ver esses links são de outro site e se por acaso apresentar algum problema eu não terei como arrumar.

As revistas brasileiras eu deixei em primeiro lugar já que a preferência é por elas, depois acertei a lista de revistas de outros países por ordem alfabética e acrescentei revistas do Reino Unido que não tinha nenhuma delas aqui no blog e também a versão da Saber Eletrônica em espanhol, sendo que esta última tem mais revistas e na medida que for sobrando espaço no HD virtual eu vou adicionando mais edições.

sexta-feira, 21 de julho de 2017

Lei da Física que imperava a 100 anos é revogada


Ilustração de uma transferência de energia por interferência de onda e ressonância de uma fonte para outra - uma descrição do conceito fundamental de ressonância.



Lei da física revogada

Pesquisadores da Escola Politécnica Federal de Lausanne, na Suíça, desbancaram uma teoria que foi considerada como uma limitação fundamental da física por mais de 100 anos. Eles conseguiram projetar sistemas ressonantes que podem armazenar ondas eletromagnéticas durante longos períodos de tempo, mantendo uma ampla largura de banda.

A quebra dessa limitação deverá ter um grande impacto em muitos campos da engenharia e da física. O número de aplicações potenciais tende ao infinito, com as telecomunicações, sistemas de detecção óptica e colheita de energia de banda larga representando apenas alguns exemplos de aplicações mais imediatas.

Fator Q

Sistemas ressonantes e de guia de ondas estão presentes na grande maioria dos sistemas ópticos e eletrônicos - para produzir lasers, fazer circuitos eletrônicos e realizar diagnósticos médicos, entre muitos outros exemplos. Seu papel é armazenar energia temporariamente na forma de ondas eletromagnéticas e, em seguida, liberá-las. Durante mais de 100 cem anos, esses sistemas obedeceram a uma limitação que os cientistas consideravam fundamental: o tempo que uma onda pode ser armazenada seria inversamente proporcional à sua largura de banda.

Esta relação era interpretada como significando que seria impossível armazenar grandes quantidades de dados em sistemas de ressonância ou de guias de onda durante um longo período de tempo, porque aumentar a largura de banda significaria diminuir o tempo de armazenamento e a qualidade do armazenamento. Esta "lei" foi formulada por K. S. Johnson, em 1914, que foi quem introduziu o conceito do Fator Q, segundo o qual um ressonador pode, ou armazenar energia por um longo período de tempo ou ter uma ampla largura de banda, mas não ambos ao mesmo tempo.

Até agora, esse conceito nunca havia sido desafiado. Físicos e engenheiros sempre construíram sistemas ressonantes com essa restrição em mente.

Morte do Fator Q

Mas essa limitação agora é coisa do passado. Kosmas Tsakmakidis e seus colegas construíram um sistema híbrido de ressonância e guia de onda feito de um material magneto-óptico que, quando recebe um campo magnético, é capaz de parar a onda e armazená-la por um longo tempo, acumulando assim grandes quantidades de energia. Então, quando o campo magnético é desligado, o pulso preso é liberado. Com isto, torna-se possível armazenar uma onda por um longo período de tempo, ao mesmo tempo mantendo uma grande largura de banda. Neste experimento inicial, o limite convencional tempo/largura de banda foi superado por um fator de 1.000. A equipe demonstrou ainda que, ao menos em teoria, não existe nenhum limite superior para esses sistemas assimétricos.

"Foi um momento de revelação quando descobrimos que essas novas estruturas não apresentavam nenhuma restrição de largura de banda. Esses sistemas são diferentes daquilo com que todos estávamos acostumados por décadas e possivelmente por centenas de anos," disse Tsakmakidis.

O limite é a imaginação

Com esta nova técnica, deverá ser possível melhorar muito as telecomunicações. Outras aplicações potenciais incluem a espectroscopia on-chip, a colheita e armazenamento de energia de banda larga, além de camuflagens ópticas - os chamados mantos da invisibilidade - muito melhores do que as atuais.

"A descoberta que descrevemos é completamente fundamental - estamos dando aos pesquisadores uma nova ferramenta. E o número de aplicações é limitado apenas pela imaginação de cada um," resumiu Tsakmakidis.


Pulsação

Denomina-se pulsação o valor da velocidade angular. Quanto maior esta velocidade, tanto maior será a frequência ou número de voltas por segundo.



quarta-feira, 12 de julho de 2017

Criado transístor spintrônico que funciona a temperatura ambiente


Esquema da heteroestrutura grafeno-MoS2 que permite a injeção do spin no grafeno e sua manipulação usando uma tensão elétrica (em cima) e micrografia colorida artificialmente do primeiro transístor spintrônico a funcionar a temperatura ambiente (embaixo).



Spintrônica

Engenheiros da Universidade de Tecnologia Chalmers, na Suécia, fabricaram um transístor de efeito de campo (FET) spintrônico usando grafeno e molibdenita, dois materiais que estão nos levando rumo a um novo patamar da eletrônica. A grande inovação é que o componente funciona a temperatura ambiente, o que abre caminho para sua incorporação nos circuitos existentes e para a criação de processadores e memórias totalmente spintrônicos.

Enquanto os processadores tradicionais usam correntes de elétrons - ou eletricidade - a spintrônica tira proveito do momento angular - o spin - de cada elétron individual, uma propriedade mais parecida com o magnetismo, já que cada elétron pode ter um spin "para baixo" ou "para cima", como se fosse um pequeno ímã. Isso deverá permitir aumentar enormemente a densidade das memórias - cada elétron funciona como um bit - e reduzir de forma igualmente drástica o consumo de energia e o aquecimento dos processadores.

Transístor spintrônico

"Controlar o fluxo de correntes de spin no estilo de um transístor é um sonho de uma década e o elo perdido rumo a aplicações da lógica de spin totalmente elétricas," disse o pesquisador André Dankert. "Os pesquisadores estão trabalhando há quase dez anos para entender as propriedades de transporte do spin em vários materiais em camadas e como eles podem ser ajustados para alcançar esse objetivo. Nosso trabalho é um marco importante no campo da spintrônica."

O grafeno é um material promissor para o transporte das correntes de spin a temperatura ambiente devido à sua baixa massa atômica. Mas foi necessário combiná-lo com outro material igualmente promissor, a molibdenita, criando uma heteroestrutura, para criar o transístor FET spintrônico. "Combinando o grafeno, onde o spin dura por nanossegundos, com o dissulfeto de molibdênio, onde o spin só dura por picossegundos, você pode controlar por onde o spin pode ir usando uma tensão na porta - essencialmente, você pode criar um interruptor de spin. Igualmente importante, mostramos nesta pesquisa um mix de materiais específico que permite que esta chave de spin funcione a temperatura ambiente," disse Saroj Dash, coautor do trabalho.

Agora que sabem que o transístor de spin funciona, os pesquisadores planejam dedicar-se à sua otimização e ganho de eficiência.


terça-feira, 4 de julho de 2017

RF Probe

Fiz essa sonda de RF para medir a potência de transmissores usando o multímetro, como não tenho wattímetro pelo menos já da pra quebrar um galho.

O esquema é bem simples e segue abaixo:


Componentes:

R1, R2 - 100R x 1/2W
R3 - 68k
C1, C3 - 10n
C2, C4 - 1n
DS1 - BAT42, BAT47, 1N5711 ou qualquer diodo de germânio
JAF1 - choque de RF


Para calcular basta usar a fórmula da lei de ohms W = V2/R onde R é o valor da carga que nesse caso é 50 ohms representado por R1 e R2 e V é a tensão medida pelo multímetro, lembrando que essa sonda é para medir potências baixas, no máximo 10W.

Abaixo a foto da montagem.